Construction of arsB and tetH mutants of the sulfur-oxidizing bacterium Acidithiobacillus caldus by marker exchange.
نویسندگان
چکیده
Acidithiobacillus caldus is a moderately thermophilic, acidophilic bacterium that has been reported to be the dominant sulfur oxidizer in stirred-tank processes used to treat gold-bearing arsenopyrite ores. It is also widely distributed in heap reactors used for the extraction of metals from ores. Not only are these bacteria commercially important, they have an interesting physiology, the study of which has been restricted by the nonavailability of defined mutants. A recently reported conjugation system based on the broad-host-range IncW plasmids pSa and R388 was used to transfer mobilizable narrow-host-range suicide plasmid vectors containing inactivated and partially deleted chromosomal genes from Escherichia coli to A. caldus. Through the dual use of a selectable kanamycin resistance gene and a hybridization probe made from a deleted portion of the target chromosomal gene, single- and double-recombinant mutants of A. caldus were isolated. The functionality of the gene inactivation system was shown by the construction of A. caldus arsB and tetH mutants, and the effects of these mutations on cell growth in the presence of arsenic and by means of tetrathionate oxidation were demonstrated.
منابع مشابه
The Two-Component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus
Acidithiobacillus caldus (A. caldus) is a common bioleaching bacterium that possesses a sophisticated and highly efficient inorganic sulfur compound metabolism network. Thiosulfate, a central intermediate in the sulfur metabolism network of A. caldus and other sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate (S4I) pathway catalyzed by thiosulfate:quinol oxi...
متن کاملRegulation of a novel Acidithiobacillus caldus gene cluster involved in metabolism of reduced inorganic sulfur compounds.
Acidithiobacillus caldus has been proposed to play a role in the oxidation of reduced inorganic sulfur compounds (RISCs) produced in industrial biomining of sulfidic minerals. Here, we describe the regulation of a new cluster containing the gene encoding tetrathionate hydrolase (tetH), a key enzyme in the RISC metabolism of this bacterium. The cluster contains five cotranscribed genes, ISac1, r...
متن کاملConstruction of novel pJRD215-derived plasmids using chloramphenicol acetyltransferase (cat) gene as a selection marker for Acidithiobacillus caldus
BACKGROUND Acidithiobacillus caldus, a Gram-negative, chemolithotrophic sulfur-oxidizing bacterium, is widely applied in bioleaching. The absence of an ideal selection marker has become a major obstacle to achieve high efficiency of the gene transfer system for A. caldus. Plasmid pJRD215, widely used in Acidithiobacillus spp., has severe drawbacks in molecular manipulations and potential biosaf...
متن کاملDiscovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacillus caldus
Acidithiobacillus caldus is a chemolithoautotrophic sulfur-oxidizing bacterium that is widely used for bioleaching processes. Acidithiobacillus spp. are suggested to contain sulfur dioxygenases (SDOs) that facilitate sulfur oxidation. In this study, two putative sdo genes (A5904_0421 and A5904_1112) were detected in the genome of A. caldus MTH-04 by BLASTP searching with the previously identifi...
متن کاملDraft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus.
Acidithiobacillus caldus is an extremely acidophilic, moderately thermophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and reduced inorganic sulfur compounds. Here we present the draft genome sequence of Acidithiobacillus caldus ATCC 51756 (the type strain of the species), which has permitted the prediction of genes for survival in extremely a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 74 18 شماره
صفحات -
تاریخ انتشار 2008